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Abstract

Quantitative characterizations and estimations of uncertainty are of fundamental importance for machine learning classification,

particularly in safety-critical settings such as the military battlefield where continuous real-time monitoring requires explainable

and reliable scoring. Reliance on the maximum a posteriori principle to determine label classification can obscure a model’s

certainty of label assignment. We develop quantitative scores of certainty and competence based on predicted probability

estimates as an effective tool for inferring the verity of positives across different data modalities and architectures. Our

theoretical results establish that competent models have distinct distributions of certainty for true and false positives. Our

empirical results bear out that there are distinct distributions of certainty scores on training and holdout data, as well as data

that is a priori out-of-distribution. Further, we find that the most reliable test for out-of-distribution data is to compare the

global True positive certainty score distribution against test data. At least 92.3% of out-of-distribution are successfully identified

this way across our two experimental modalities at the tranche level. Further, 100% of the out-of-context images are identified

as out-of-distribution using the stochastic form of our out-of-distribution detection test across all five stochastic variants of the

ResNet models. Consequently, we find that the use of our certainty framework provides a robust means of detecting out-of-

distribution inputs, while also serving as a reliable mechanism for comparing model quality of accurately distinguishing between

true and False positives, particularly in safety-critical contexts.
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Abstract—Quantitative characterizations and estimations of uncertainty are of fundamental importance for machine learning
classification, particularly in safety-critical settings such as the military battlefield where continuous real-time monitoring requires
explainable and reliable scoring. Reliance on the maximum a posteriori principle to determine label classification can obscure a
model’s certainty of label assignment. We develop quantitative scores of certainty and competence based on predicted probability
estimates as an effective tool for inferring the verity of positives across different data modalities and architectures. Our theoretical
results establish that competent models have distinct distributions of certainty for true and false positives. Our empirical results bear
out that there are distinct distributions of certainty scores on training and holdout data, as well as data that is a priori out-of-distribution.
Further, we find that the most reliable test for out-of-distribution data is to compare the global True positive certainty score distribution
against test data. At least 92.3% of out-of-distribution are successfully identified this way across our two experimental modalities at the
tranche level. Further, 100% of the out-of-context images are identified as out-of-distribution using the stochastic form of our
out-of-distribution detection test across all five stochastic variants of the ResNet models. Consequently, we find that the use of our
certainty framework provides a robust means of detecting out-of-distribution inputs, while also serving as a reliable mechanism for
comparing model quality of accurately distinguishing between true and false positives, particularly in safety-critical contexts.

Index Terms—Machine Learning Assurance, Uncertainty Quantification, Network Intrusion Detection, Image Classification.

✦

1 INTRODUCTION

A S machine learning systems are becoming increasingly
embedded in everyday life, particularly within safety-

critical settings, there is a growing need to develop robust
techniques. These techniques should assure model qual-
ity in the face of uncertainty and enable human agents
to identify and prevent the misapplication of automated
decision-making. Traditional approaches to building in-
telligent applications and autonomous systems primarily
rely on knowledge representations and symbolic reasoning
whose implementations include programming condition-
based rules, stateful logic encoded in finite state machines,
and physics-based dynamics of environments and objects
[12], [32], [46].

Although rule-following provides a form of assurance
and can be readily subject to human scrutiny, they fare
poorly when used in production autonomy applications
when dealing with real-world uncertainty and high di-
mensional sensory data, which is necessary for perception
and situation-understanding applications. The rule-set and
stateful logic in these settings is often incomplete and
challenged against encompassing an ever-evolving set of
situations. Hybrid solutions inspired by human cognition
benefit from both rule-like and statistical (sub-symbolic)
properties. However, they are not necessarily scalable [11]
(for some instances of attempts to increase scalability see [2],
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[5], [13]) and suffer when data is noisy and high dimensional
[14].

Uncertainty quantification (UQ) techniques have pro-
vided an invaluable means towards this end, not only in
providing a broad framework for articulating the forward
propagation of uncertainty in models [28], [55], but also for
providing frameworks for studying model and parameter
uncertainty [7], [51]. In particular, these so-called inverse
problems help with bias correction between experimental
and mathematical models, as well as enable model develop-
ers a means to perform parameter calibration. Furthermore,
UQ provides a means for assessing discrepancies between
the data that models are trained on and the often highly
divergent data production models encounter.

We are primarily interested in this latter use of UQ to
establish the trustworthiness of machine learning models in
real-world safety-critical settings where tasks span multiple
modalities, such as those present on the modern military
battlefield. In establishing trustworthiness of models, we
seek to establish resilience in light of shifts in data, both
natural and adversarial, which are intentional efforts to
thwart model development and impair decision making.

Our work addresses the general challenge of providing
machine learning assurance that when encountering novel
data, classification models are certain in their predictions,
and with giving human agents a means of detecting if inputs
are out-of-distribution relative to the training and validation
data that a model has relied on. In particular, our work aims
to address the relative paucity of resilient UQ methods in
two safety-critical settings with relevance to the modern mil-
itary battlefield: zero-day network intrusion detection, and
out-of-context image classification for battlefield sensors.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Advancements in distributed computing and small form
factor devices have the capacity and capability to revolu-
tionize warfare, with many sensors and other devices inter-
connected across multiple warfighting domains. Known as
the Internet of Battlefield Things (IoBT), this future battle-
field will rely on intelligent systems to properly transport
heterogeneous, multi-modal data across networks to the
point of impact to enable successful military operations [24].

Some of the artificial intelligence (AI) tasks relevant to
the IoBT include securing the network, image recognition
and detection, and bringing intelligence to edge sensors. In
order to ensure the models used in the IoBT are robust and
resilient against novel adversarial methods – including zero-
day attacks – methods to detect out-of-distribution inputs
for multi-modal data must be developed. Current machine
learning methods produce deterministic outputs and train
well on existing datasets, but often stumble in real-world
applications when confronted with novel attacks [37], [44].

Another important IoBT task is the proper detection and
classification of images from these interconnected sensors,
which are used to establish context. In order to reduce harm
and minimize adversarial advantage, detection of novel
inputs that are out-of-context is necessary to inform human
decision makers. Specifically, images that are out-of-context
are those that are out-of-distribution (OOD).

Given that the IoBT will be an adversarial environ-
ment with degraded signal and adversarial poisoning of
information, the need for robust UQ methods to provide
assurance in the open-world setting [63] motivated our
work to develop a mathematical framework that provides
resilient guarantees across modalities, tasks, architectures,
and statistical frameworks (particularly, between determin-
istic/frequentist and stochastic/Bayesian frameworks) in
safety-critical settings. Further, applying uncertainty quan-
tification techniques to Bayesian deep learning models has
enabled out-of-distribution detection on individual inputs,
particularly when identifying adversarial attacks [47], [54].

Having identified the importance of UQ for OOD for
these two safety-critical domains, and the ability of applying
UQ to Bayesian models in order to perform OOD detection
on individual inputs, we make the following contributions:

• A mathematically rigorous theoretical framework of
certainty, competence, and doubt that provides intrin-
sic scores of any classification model architecture’s
degree of certainty for a given prediction, and a
groundwork for penalty-functions for future model
training that optimizes around competence;

• A non-parametric statistical test for out-of-
distribution detection test using the distribution
of certainty scores, with reliability guarantees derived
from the above theoretical framework;

• Significant computational experiments demonstrat-
ing the robustness of this framework for out-
of-distribution detection across multiple domains,
modalities, tasks, architectures, datasets, and statis-
tical frameworks;

• Evidence that even minor Bayesian sampling on top
of pre-trained deterministic models can be used to
build ensemble models with improved accuracy and
competence, while also enabling OOD at the edge.

Section 2 provides a detailed literature review while
Section 3 describes our mathematical contributions to the
theory of uncertainty quantification for machine learning
assurance. Section 4 details the data, modeling architec-
tures, computational experimentation, and evaluation met-
rics used to assess performance of our proposed certainty
scoring approach. Section 5 provides and discusses the
results of our experiments, while Section 6 summarizes key
impacts and proffers future directions for this research.

2 LITERATURE REVIEW

2.1 Uncertainty Quantification
Uncertainty quantification has seen a rise in use for various
types of deep learning applications. Uncertainty estimation
forms a significant component of software testing for soft-
ware containing deep learning elements. Previous research
has found various techniques from uncertainty estimation
effective in reducing defects and vulnerabilities of soft-
ware containing deep neural networks [52], [65]. The main
methodology for employing uncertainty quantification tech-
niques for reducing defects in software containing deep neu-
ral networks is to use a supervisor module in a deep neural
network software system that evaluates whether a given
prediction by the deep neural network should be trusted or
not. Recent empirical work has found measures developed
for uncertainty quantification to work well for the super-
visor module [65]. As such, these uncertainty estimation
techniques have been thoroughly empirically validated for
their use in software engineering [65], and a Python package
is even available for developers to implement many of
these uncertainty quantification techniques as part of their
software development [53].

One particular uncertainty estimation technique used in
the software engineering of deep learning-enabled systems
is the Prediction Confidence Score [42]. Zhang et al. use
the intuition that a more certain prediction for a machine
learning classification is one that has a large gap in SoftMax
scores between the most probable and second most probable
classes. They use this score to successfully sort benign from
adversarial examples. This technique is noteworthy in the
context of our research, as we build upon a similar instan-
tiation but from a different perspective and for a different
objective. Namely, we derive the same measure based on
the geometric properties of SoftMax scores as well as use
this intuition to derive fully new measures for machine
learning models, which can be used for out-of-distribution
detection. Overall, these studies have shown that machine
learning-enabled software has successfully used uncertainty
quantification to develop more robust and resilient software.

Our contributions to UQ aim to inform model develop-
ment from a decision-theoretic perspective and are intended
for the same level of general use as above. Whereas earlier
literature relied on low confidence scores to detect out-of-
distribution data [35], our UQ scores and corresponding
out-of-distribution detection test compares the distribution
of these scores on unlabeled inputs against the prior dis-
tributions gathered from training and validation data. One
immediate advantage of this test is that it avoids mistakenly
identifying as OOD low confidence inputs when a model
correctly classifies a predicted label with low confidence,
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or otherwise overfits within a label and determines similar
scores to both true and false positives.

2.2 Network Intrusion Detection
The security of any network, including the IoBT, should be
considered as a first principle. Network Intrusion Detection
Systems (NIDS) play a critical role in network security.
These systems are engineered to detect unauthorized use of
computer and network systems by both internal and exter-
nal users. NIDS has seen recent and successful applications
of artificial intelligence and machine learning techniques,
with deep learning techniques such as Variational Au-
toencoders, Deep Neural Networks, Convolutional Neural
Networks, Recurrent Neural Networks, and Belief Neural
Networks accounting for the most notable recent successes
[10], [45], [49]. Although these models often produce high-
accuracy predictions, they are primarily deterministic [20],
[34], and few have been evaluated on their ability to de-
tect OOD data [62]. As it stands, there is a paucity of
research into uncertainty quantification for NIDS despite
the risks posed by emerging cyber threats. Most contem-
porary NIDS researchers rely on the following simulated
Netflow datasets to train their models: KDD Cup’99, Kyoto
2006+, NSL-KDD, UNSW-NB15, CIC-IDS2017, and CSE-
CIC-IDS2018 [21], [23], [31], [34], [36], [45].

NIDS fall into two main categories: signature-based
and anomaly-based [22]. Signature-based systems identify
potentially harmful network traffic by cross-referencing a
database of known malicious signatures and attack strate-
gies. In contrast, anomaly-based systems strive to establish a
baseline of normal behavior and flag any activity that strays
from this standard. Given the dynamic nature of cybersecu-
rity threats, adaptive security measures that combine these
methodologies are the preferred choice [3], [38].

Packet capture data provides a granular view of a net-
work by providing raw datum containing header infor-
mation and payload at a standardized size. Due to the
frequency of packets through a network and the granularity
of the datum, models trained on packet capture data may be
able to detect cyber threats in-time when compared to those
trained on Netflow data, which requires communication to
end. In particular, recent research using deep learning for
NIDS with packet-level data has produced promising results
with high accuracy [35], [56], including edge network envi-
ronments [61]. However, this research on packet-level data
has not investigated detecting out-of-distribution inputs.

In order to ensure the models used in the IoBT are robust
and resilient against novel adversarial methods – including
zero-day attacks – methods to detect out-of-distribution
inputs for multi-modal data must be developed. Our con-
tributions to this space are novel because OOD inputs at
packet capture level is not presently in the literature, and
can be used to identify OOD inputs, such as zero-days.

2.3 Image Classification
Generative AI models are becoming increasingly capable
of producing adversarial input data such as images for
either positive [43] or nefarious [40], [48], [50] intent. This
evolution necessitates the creation of more resilient models
that can provide assurance and remain effective against the

emergence of new threats. Object detection and recognition
models invariably depend on the implicit contextual infor-
mation of an image, in the sense that the objects identified in
an image co-vary with each other and other scene properties
(i.e., the context) across images. Most image detection and
identification systems are trained on images in a natural
context, like a plate of food on a restaurant table. When
an image of a plate of food is superimposed in an out-of-
context environment, such as underwater, the surrounding
visual information can negatively affect a model’s ability to
detect or identify the out-of-context image. Adversaries can
exploit this weakness in order to make hostile objects harder
to detect or properly identify.

Deep neural networks have acquired a reputation for
processing visual information at scale, with convolutional
neural network block architectures such as AlexNet pro-
viding a successful research direction for computer vision
problems such as image detection and classification [19].

The ResNet architectures developed in [15] won the
2015 ImageNet competition, outperforming the 2012 winner
AlexNet. The ImageNet project is an image database orga-
nized by the WordNet hierarchy, and the challenges issued
by the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) from 2010 to 2017 have been instrumental in orga-
nizing and providing open source data for the development
of computer vision algorithms [18].

When considering the application of context integration,
ResNet appears to be a popular architecture for implemen-
tation. A survey from Wang and Zhu [64] shows ResNet
is one of the most used architectures for both image- and
video-based context approaches. Thus, the performance,
popularity, and availability of pre-trained ResNet models
make them suitable for the baseline testing of our approach
in the deterministic and stochastic settings discussed in
Section 4.

Networks trained with natural object datasets such as
ImageNet implicitly rely on the labeled objects occurring
in appropriate contexts, and networks trained on these
datasets have repeatedly failed to identify objects that are
placed out-of-context [8], [25], [27], [29], [33], [41]. Addi-
tionally, Zhang et al. [41], with support from human psy-
chophysics experimental results that provide a benchmark
for the computational models– including for ResNet archi-
tectures, identify ten properties of where, when, and how
context modulates image recognition. Acharya et al. [58]
trained a ResNet50 network for feature extraction as part
of their large-scale OOC experiments for detecting OOC
objects using contextual clues. This latter research broadly
informs our experimental work, not the least by providing
the COCO OOC dataset.

Our contributions in part ameliorate the issues posed by
out-of-context images for visual network development by
providing an architecture independent means of assessing
when data diverges from the training and test distributions
used in model development.

3 THEORETICAL CONTRIBUTIONS

In full, our theoretical contributions are:
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• The theoretical framework of certainty and competence
as intrinsic features of predictors p in multi-class
classification decision problems;

• The competence hierarchy, which furnishes a qualita-
tive characterization of a model p’s performance at
approximating q, and quantitative bounds on p’s
performance at distinguishing the distributions of
True and False positives, both with respect to the
means of distributions, as well as with respect to
their medians if models are relatively α-expert;

• A two stage non-parametric out-of-distribution test
for determining if an input sample distribution be-
longs to the underlying distribution of true positives
on which p was trained;

• Establishing that HMC for Bayesian inference within
our certainty framework enabled the extension of our
out-of-distribution test to out-of-distribution detec-
tion at the level of individual outputs.

3.1 Classification Certainty and Competence

Given a random variable X : Ω → Rn subject to a probabil-
ity distribution q(x) dx, where dx is the Lebesgue measure
on Rn, a learning machine is a conditional probability density
function p(x|ω) with x ∈ Rn and ω ∈ A ⊆ RW , where A
denotes a parameter space of weights, which attempts to
approximate the true density function q [4]. When given a
set of random samples DN = {X1, X2, . . . , XN}, a statis-
tical learning machine is a function approximating the true
probability density function drawn from the sample set DN .

In multi-class classification decision problems on d dis-
tinct labels, we assume the presence of an underlying
learning machine f((x, y);ω), with input features x ∈ Rn,
weights ω ∈ RW , and discrete label y ∈ [d]. Upon receiving
x, the learning machine outputs a vector of likelihoods
for each label. These likelihoods are then transformed into
a probability vector p ∈ ∆d following the application
of a normalizing function, such as SoftMax.The learning
machine generates a parametric model p(y|x;ω). We specifi-
cally explore situations where the decision maker is a neural
network f : Rn → Rd, with input features drawn from
Rn, and whose weights represent the parameters of the
neural network trained according to our loss function. This
discussion can also be generalized to encompass classical
multi-classification problems.

The concepts of certainty, competence and doubt were
introduced in [60], and were developed with multi-class
classification decision problems in mind. Here, the decision
maker is conceived as a neural network, but this concept can
be readily generalized to arbitrary discriminant functions
γ : X → [d] as discussed in decision science literature [26].
Across d distinct labels, we assume that we have a decision
maker f(x;ω) and corresponding predictor pω : Rn → ∆d

determined by weights ω, whichupon receiving input x ∈
Rn will output a probability vector in ∆d. We encode the
certainty of our predictor by first computing the following
skew-symmetric matrix:

Co(p) := 1p⊤ − p1⊤ (1)

and then setting the certainty of a probability vector p to be
the following matrix:

C(p) = I+Co(p). (2)

Equations 1 and 2 can be understood as component
certainty and complete component certainty respectively, with
the completion with respect to the certainty we have when
comparing a choice with itself. In particular, in Equation 2
each matrix coordinate score describes the pairwise certainty,
defined by Equation 3, between labels with repeats, as:

Cij(p) =

{
1 i = j

(πj − πi)(p) ≡ pj − pi i ̸= j
(3)

From pairwise certainty, we then set the certainty score
for probability vector p by Equation 4

ς(p) := min
i
{Cij(p) : j = argmax

k

∑
i

Cik(p)}

:= min
i∈[d]

{|δij + pj − pi| : pj = max
k∈[d]

{πk(p)}}

:= pĵ − pǰ

:= πĵ(p)− πǰ(p),

(4)

where pĵ denotes the highest probability in p, and pǰ the
next highest probability so that the certainty score of a
sample prediction is the difference between the probability
of the label predicted by the maximum a posteriori (MAP)
principle and the next greatest probability.

The penultimate equivalent definition of certainty score
appears earlier [42] under the name Prediction Confidence
Score, although our work was derived independently and
with respect to the full certainty of a probability vector on
which we derive our proposed cost function in suggested in
Section 6.

The following is a collection of straightforward proper-
ties of certainty:

Proposition 1. For all x,y ∈ Rd,

1) Tr(C(x)) = d;
2) C(x) ∈ GLd(R);
3) ⟨x,C(y)x⟩ = ∥x∥2 ≥ 0.

From this, we can conclude that certainty is a mapping
sending C : ∆d → GLd(R).

Geometrically understood, ς is a map from ∆d → [0, 1]
whose zero locus is geometrically understood as the sub-
simplices passing through the barycenter of ∆k and the
barycenters of the boundary components, ∂∆k.

With DN denoting the set of N samples (x, y) where x
is drawn from sample space Ω, and y drawn from [d] =
{1, . . . , d}, for a predictor p : Ω → ∆d, we denote by pi the
probability vector of p(xi), the ith sample of DN . Further,
we denote by p̂i := argmaxj πj(p̂(x

i)), and by Y(i) the true
label for the ith sample.

The following proposition follows immediately from the
definitions.

Proposition 2. For all p ∈ ∆d,

0 ≤ ς(p) ≤ max
k∈[d]

{πk(p)}.

Our notion of certainty and certainty scoring in turn
led to a scoring system to evaluate the competence of a
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learning machine f . In particular, we define component
competence with respect to the probability vectors p de-
rived from f(·;ω), and q, the probability vector derived
from the empirical distribution of label assignments from
DN := (X ,Y) ∈ (Ω× [d])N in Equation 5.

CC(p,q;DN ) =
1

dN

∑
i∈[N ]

1⊤Co(p(xi))q(xi)

= −1

d
+

1

N

∑
i∈[N ]

⟨p,q⟩(xi)
(5)

and similarly, using Equation 2 and complete component
certainty, we define complete component competence in Equa-
tion 6 as:

CCC(p,q;DN ) =
1

dN

∑
i∈[N ]

1⊤C(p(xi))q(xi)

=
1

N

∑
i∈[N ]

⟨p,q⟩(xi)
(6)

with the second equivalent definition following from un-
folding

1⊤Co(p)q = ⟨1,1p⊤q− p1⊤q⟩.

Given these identities, CCC is the expected probability
that a random assignment of x according to p correctly
predicts the random assignment of x according to q, which
we denote by p ≡ q; consequently, CC is the improvement
of p over relying on a uniform distribution of labels.

We observe that in principle CCC(q,q;DN ) = 1 when-
ever we are trying to approximate a deterministic process
with our learning machine. However, when trying to learn
a stochastic process, CCC(q,q;DN ) < 1 for sufficiently
large N . Whenever CCC(p,q) ≥ CCC(q,q), we say that
p has mastered q. Without loss of generality, we will omit
p and q when discussing competence, using QC to denote
CCC(q,q).

Component competence is used in contrast with empirical
competence (see Equation 7), which we define with respect to
the observed certainty scores on our training data. We de-
fined empirical competence to score and compare the qual-
ity of model predictions by penalizing models with high
certainty false positives. Specifically, empirical competence
is the difference between the sum of certainty scores of the
true positives and the certainty scores of the false positives,
divided by the total number of predicted positives. We
formally define empirical competence as:

K(p;DN ) =

1

N

∑
i∈[N ]

ς(pi)
[
1{j : Y(j) = p̂j} − 1{j : Y(j) ̸= p̂j}

]
(i).

(7)

We use the order relationship between K, CC, and CCC
to define the following competence hierarchy relative to q
and samples DN . Let α ∈ [0, 1).

If CC ≤ α, then p is relatively α-uninformed; otherwise,
we say p is relatively α-informed. Whenever p is relatively
α-informed, then the average estimated probability for the
true label of xi is greater than the uniform probability plus

α. Whenever p is relatively α-informed, we have the follow-
ing competence hierarchy with respect to empirical competence
such that:

• Whenever K < 0, we say p is incompetent;
• When 0 ≤ K < α, we say p is relatively α-amateur.
• Whenever α ≤ K < CC, we say p is relatively α-

competent.
• Whenever CC ≤ K < CCC, we say p is relatively α-

expert.
• Whenever CCC ≤ K, we say p is relatively prescient.

We defined empirical competence to rely on certainty
scores given their utility when the task is to approximate a
d-coloring of Ω. Further, in the empirical setting CCC is the
average probability assigned by the learning machine to the
observed label.

Our use of certainty scoring was motivated by the need
for machine learning model assurance, model explainability,
and to perform out-of-distribution testing. In particular, we
find that the distribution of certainty scores within labels
and across the entire domain can be used to infer when
data has been mislabelled by a learner when models have
sufficiently high competence, and moreover, can be used to
perform out-of-distribution detection on datum whenever
sufficiently high competence has been established.

The following theorem establishes the key inferential
relations between the α-competence hierarchy and the dis-
tribution of certainty scores:

Theorem 1. Suppose that q is an almost everywhere continuous
d-coloring of Ω, i.e. for all x ∈ πΩ(DN ), there is an i ∈ [d] such
that q(x) = ei so that ⟨pi,qi⟩ = πi(p).

Further, suppose that for some α ∈ [0, 1) that p is α-
informed. Let CT

p : Ω → [0, 1] and CF
p : Ω → [0, 1]

denote the random variable representing the certainty score of
p when p predicts a true positive and false positive respectively
with probability distributions ρ, ν respectively defined accordingly
from p and q with sample averages µ̄ρ and µ̄ν (respectively).
Further, let X̌ denote the bounded random variable of the second-
greatest alternate probability. Finally let NT ∈ [N ] denote the
number of samples correctly predicted by p and NF = N −NT

the number of incorrect prediction. Then :

1) Whenever p is relatively α-competent, either µ̄ρ > µ̄ν +
α, or otherwise(

N

NT

)
α ≤ µ̄ρ ≤ min

{
1,

(
1

NF

)
NT

N

}
and[

NF

NT

]
µ̄ρ ≤ µ̄ν ≤ min

{
1,

[
NT

NF
µ̄ρ − (

N

NF
)α

]}
;

2) Whenever p is relatively α-expert, and with ¯̌X =:
1

NT

∑
pi
ĵ
, either:

a) ¯̌X < 1
d and for all a > 0,

P{X̌ ≥ 1

d
+

a

4
} ≤ 1

1 + a2
.

or
b) ¯̌X ≤ N

dNT and for all a > 0

P{X̌ ≥ N

dNT
+

a

4
} ≤ 1

1 + a2
.
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3) p relatively prescient implies p must have NT = N on
DN . Further, p will be α-informed for all α ∈ [0, 1).

Theorem 1 is intended to capture intuitions regarding
hypothesis testing given the sample averages of the cer-
tainty score of true and false positives. In particular, we
identify that while high competence is desirable on our sam-
ple data, for the purposes of inference, a trade-off may need
to be made between accuracy and the α hyperparameter
indicating a degree of competence.

Immediately, every relatively α-informed, α-competent
p will either separate the expected values of the certainty
score for true and false predictions, or otherwise, the num-
ber of false positives from our sample must be bounded

above by ⌊min

{ (
NT /N

)2
α

,NT (µ̄ρ − α)

}
⌋, which can be

confirmed by manipulating the two intervals bounding µ̄ρ

and µ̄ν .
Whenever α doesn’t separate µ̄ρ and µ̄ν , and p is α-

competent, then for any α ≥ 1
30 , we effectively must have

too few false positives for the purposes of inferring if the
certainty of p on an arbitrary x ∈ Ω will be distributed
according to either the true or false positives of p. In this
respect, whenever selecting α as a target threshold for
competence, we must weigh the trade-off between sample
accuracy and separating true and false positives on our sam-
ple by a distance sufficient for the purposes of significance
testing. α-expert p are desirable because in addition to the
separation property of α-competence, the model will have
high certainty relative to the number of alternative choices,
with at most approximately 20 percent of samples having
certainty scores close to zero.

3.2 Doubt
When certainty is low, doubt about the given model’s predic-
tion is high. The connection between certainty and doubt is
realized in the geometric context of the real projective line,
as discussed in [60].

We define the doubt of p as:

D(p) = Inv(C(p))− I

where Inv is the element-wise inverse function defined on
R̂d×d such that 0 and ∞ are assigned as reciprocals.

When working with sparse or otherwise large matri-
ces, the doubt scores can be computed pairwise by com-
puting pairwise doubt, defined in Equation 8 where j =
argmaxi πi(p).

δi(p) =


0 i = j

1

πj(p)− πi(p)
i ̸= j

(8)

In [60], we present the argument that the projective line
characterization of certainty/doubt can provide a differen-
tiable function to be composed with the outputs of SoftMax
as part of the optimization process.

The projections of the iterated Segre map are with respect
to the components fixed by the columns of the certainty of
p and the final component, ie [

∏
i
Cij(p) : 1]. The intuition

behind this is that minimizing doubt will be guaranteed to
maximize certainty, and vice versa.

Finally, we define raw certainty and raw doubt with
respect to the logits themselves (see Equations 9 and 10
respectively).

ξij(f) =

{
1 i = j

πj(f(x))− πi(f(x)) ≡ (πj − πi)(f(x)) i ̸= j
(9)

ρij(f) =


0 i = j

1

πj(f(x))− πi(f(x))
i ̸= j

(10)

3.3 Loss Functions Shaped By Certainty and Doubt
We propose that a cost function for optimizing in our
certainty framework be define by the minimum angle de-
termined by applying the stereographic diffeomorphism to
projections of an iterated Segre map (see [9] for further
details).

For our cost function, the two natural candidates for
assigning penalty per sample k are the doubt-cost (Equation
11) and the raw-doubt cost (Equation 12).

θcost(p
(k)) = min

j
arcsin

1− (
∏
i
Cij(p

(k)))2)

1 + (
∏
i
Cij(p(k))2)

 , (11)

θcost(f(x
(k))) = min

j
arcsin

1− (
∏
i
ξij(f(x

(k)))2)

1 + (
∏
i
ξij(f(x(k)))2)

 .

(12)
The primary difference between Equations 11 and 12

stems from a decision whether to apply softmax before
taking the differences to determine θ or take the difference of
the logits produced by f to determine θ. In the former case,
θ ∈ [0, π

2 ] while in the latter case θ ∈ (−π
2 ,

π
2 ] following

whether we have unbounded raw-doubt scores, which only
occur as certainty approaches 1.

For the multi-class classification decision problem with
loss function

L(f(x), y) = 1{fy(x) ≤ fi(x) for some i ̸= y},

the goal of minimizing L-risk is equivalent to minimizing
the misclassification probability and thus, when using the
raw-doubt cost, we could minimize the expected loss from
the adjusted loss function

D(f(x), y) = χ(θcost(f(x)))L(f(x), y),

where χ is a penalty-function that monotonically decreases
on θcost(f(x)) so that we realize greater losses when we
misclassify with greater certainty than with less certainty.

Although the doubt-cost and raw-doubt cost functions
naturally arise from considering the underlying determi-
nantal variety of the iterated Segre embedding, they suffer
the drawback of being neither convex nor concave functions
without further restriction. Since the squared Euclidean ma-
trix norm is convex, one computationally tractable convex
penalty function defined with respect to the entire certainty
is:

χ(p) =
∥C(p)∥22

d2
+ ∥p∥22
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with corresponding adjusted loss function

D(f(x), y) = χ(σ(f(x)))L(f(x), y),

where σ is the SoftMax function. We may refer to such a
penalty function χ(p) as the gross certainty of p.

Although gross certainty is strictly convex when differ-
entiating with respect to coordinates from ∆d, the Hessian
of χ(f(x)) is not necessarily positive-semi definite with
respect to a coordinate system in terms of x or ω. For this
reason, it would be worthwhile to explore the empirical
trade-offs when training models using the different penalty
functions and corresponding family of loss functions vis a
vis model performance and competence.

3.4 Out-of-Distribution Detection with Two Stage Mann-
Whitney U-Test and ECDF Tests

We developed an out-of-distribution detection test using
our certainty framework that compares the distribution of
certainty scores of test data against the distribution scores
of the training and validation data. This test has two stages
and two variants; the first is intended for application to
test data which is randomly drawn, while the second is
intended to be applied to individual data from which we
have formed a Bayesian sample, such as the ones formed
using Hamiltonian Monte Carlo in our stochastic models.

3.4.1 Mann-Whitney U Test

When test samples are randomly drawn, our out-of-
distribution detection test uses the Mann-Whitney U test,
which is a nonparametric test whose null hypothesis is
that random draws from samples X and Y have an equal
likelihood of dominating one another, with the alternate
hypothesis being that one distribution stochastically dom-
inates the other. The general formulation assumes that:

1) The distribution under the null hypothesis is
known;

2) Observations from both samples are independent;
3) The sample populations are linearly ordered;
4) Under the null hypothesis the H0, the distributions

of X and Y are identical,
5) Under the alternative hypothesis, the distributions

are not identical, such that the following test statistic
is consistent only when one distribution dominates
the other.

Each assumption is satisfied in our general context when
working with certainty scores, provided we assume the
distribution under the null hypothesis to be the empirical
certainty score distribution of all samples (either globally, or
within a given label). From Theorem 1, sufficiently compe-
tent models will have distinct TP and FP distributions both
globally, and provided sufficient competence and sample
sizes within labels, locally as well.

Finally, the two stage, global-local test we developed can
substitute other general non-parametric tests for the U-test,
such as Kolmogorov-Smirnov.

3.4.2 Empirical Cumulative Distribution Function Test
For our Bayesian models, in-lieu of Mann-Whitney U
(MWU) test, we developed the following test using param-
eters β, γ, δ ∈ (0, 1) such that γ < δ.

With control data D, generate D many Bayesian samples
with corresponding empirical CDFs Pi describing the image
of functions fi applied to D . Given test data t ∈ T , the
Bayesian samples produce D many corresponding sample
points fi(t) for each t ∈ T . Modulo conditions on D, we
define an indicator function for t ∈ T by

ED(t) =
∑
i∈[D]

1{γ ≤ Pi{Xi ≤ fi(t)} ≤ δ} (13)

and
AD(t) := 1{βD ≤ ED(t)}. (14)

We refer to Equations 13 and 14 as the Empirical Cumula-
tive Distribution Function (ECDF) test-statistic and the Em-
pirical Cumulative Distribution Function test respectively.
Whenever A(t) = 1, we consider t likelier in-distribution rela-
tive to D, otherwise we consider t as likelier out-of-distribution
relative to D. In the use cases that we have considered, fi
is the corresponding certainty score on input t from the
ith Bayesian sample, and Pi is the corresponding empirical
cumulative probability distribution of certainty scores from
the ith Bayesian sample drawn from our common input D.

Further, one can adjust β or (γ, δ) respect to target
significance α so that

1− α ≤
D∑

i≥⌈βD⌉

(
D

i

)
pi(1− p)D−i.

In doing so, we assume as a prior that the projection of
a random variable X onto its individual Bayesian samples
Xi will be independent of its other projections, and that
the probability that ED(t) is a Binomial variable with the
number of draws being the number of Bayesian samples
and the probability p being the length of the interval from
γ to δ. When adjusting, (1− α) will be the prior probability
that a random variable distributed according to D will be
such that at least βD of the D many Bayesian samples were
likely to have been drawn with respect to the interval (γ, δ).

As discussed later in Sections 5 and 6, the ECDF test
performs wildly depending on input data and the target
interval. Future development of the ECDF test ought to ap-
ply the posterior distribution drawn from the in-distribution
data upon calculating the marginal likelihood against the
prior, Binomial distribution, and then apply this new poste-
rior distribution to samples.

3.4.3 Global/Local Out-of-Distribution Detection Test
Our two stage test is a multi-valued classification that we
have prepared in two-forms: a strong form and a weak form.
In both forms, the three possible over-arching classifications
are: In-Distribution, Out-of-Distribution, and Indeterminate.

Our two stage test compares a test distribution of cer-
tainty scores against the pooled training and test certainty
score distributions. In the first stage, these distributions
are with respect to the global certainty scores and their
respective predictive category. In the local stage, they are
with respect to the individual labels themselves.
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We then apply the MWU test for tranches or the ECDF
test with respect to Bayesian samples for the global/local la-
bel distribution modulo predictive status. We then aggregate
the results of these tests to determine if a test distribution
is out-of-distribution. See the appendix for a more in-depth
breakdown of the logic of our out-of-distribution test.

It is assumed that the input distribution is derived from
an input stream belonging to a single target category. In
practice this is achieved by using the certainty distributions
from our Bayesian samples for an individual input in the
stochastic case, and for tranches of data from distributed
sensors that are capturing the same data simultaneously, or
a sensors data taken sequentially, or otherwise, data that
was pooled together prior to application of the test by some
similarity score, in the deterministic cases.

3.5 Hamiltonian Monte Carlo Simulation
As BNNs and Bayesian sampling are an active area of
research, there are many inference schemes currently de-
ployed to learn the posterior distribution over a BNN’s
model parameters. For our research, we sampled directly
from the posterior via Markov Chain Monte Carlo (MCMC)
using HMC [1] as implemented in hamiltorch [39].The
benefit of using hamiltorch is that it became feasible to
run HMC on a single GPU, allowing us to run multiple
experiments in parallel, and the ability to use HMC for
computationally tractable Bayesian sampling allowed us to
explore an additional point of comparison for the robustness
of test.

HMC sampling occurs in two parts: first, as an approx-
imate Hamiltonian dynamics simulation based on numer-
ical integration, followed by a correction by performing a
Metropolis acceptance step.

Starting from the unnormalized log posterior, which is
defined via the likelihood p(Y|X, ω) and the prior p(ω), the
samples are generated as follows:

p(ω|Y,X) ∝ p(Y|X, ω) p(ω).

Likelihood is a function of the parameters, ω ∈ RD ,
which in our case will be the weights of the Bayesian
neural network models. The Bayesian model function is
then transformed into a Hamiltonian system by introducing
a momentum variable p ∈ RD , such that we now have a log
joint distribution, log[p(ω,p)] = log[p(ω|Y,X) p(p)], which
is proportional to the Hamiltonian, H(ω,p).

Letting p(p) = N (p|0,M), where the covariance M
denotes the mass matrix, the Hamiltonian can be written
as:

H(ω,p) = − log[p(Y|X, ω) p(ω)]︸ ︷︷ ︸
Potential Energy

U(ω)

+ 1/2 p⊤M−1p.︸ ︷︷ ︸
Quadratic Kinetic Energy

K(p)

(15)
Equation 15 consists of a potential energy term, which is
our original Bayesian model, and a quadratic kinetic energy
term derived from the log probability distribution of a
Gaussian.

We simulate the dynamics of the Hamiltonian system
using the leapfrog integration scheme to sample from this
model. The details of this scheme are to be found in [6],
which provides a general overview, and [39], which gives
the specific symmetric scheme we used.

4 METHODOLOGY

4.1 Data
4.1.1 Network Traffic Data
As mentioned in Section 2.2, NIDS researchers often use
the same simulated Netflow datasets to train their machine
learning models, with the benchmark datasets being KDD
Cup’99, Kyoto 2006+, NSL-KDD, and CSE-CICIDS-2018
[21], [23], [31], [34], [36], [45]. These datasets are created
by simulating a network and attacks on the network in
an artificial environment. Papers have discussed similar
methods for creating and prepossessing packet-level data,
converting each byte into an integer from 0 to 255 and filling
in missing bytes with 0s to feed into a neural network [35],
[59]. For our experiments, we relied on two popular datasets
for NIDS deep learning: CICIDS-2017 [30] and UNSW-NB15
[17]. Following [61], we chose these data sets because they
included both raw packet capture data and labeled network
flows. The Canadian Institute for Cybersecurity generated
the CICIDS dataset containing five days of network traffic
with various attacks. The CyberRange Lab at University
of New South Wales - Canberra generated the IXIA Per-
fectStorm tool that was used to generate the raw network
packets in the UNSW dataset.

In order to label the packet capture data from the CICIDS
and UNSW data sets, we used Payload-Byte, which is a
standardized method using metadata to label raw packet
captures for NIDS datasets [59]. Specifically, data points
from our modified data sets contained 1500 payload bytes
with values of 0-255 before they were further normalized
between 0 and 1, a label, and header information, which was
dropped to focus solely on packets and labels. Whenever
packets was smaller than 1500 bytes, the rest of the bytes
were filled in with zeros, and whenever packets exceeded
1500 bytes, they were truncated. The CICIDS data contained
15 classes, with one benign class and 14 attack types. The
UNSW data contained ten classes, one benign class, and
nine attack types..

4.1.2 ImageNet and COCO OOC Data
Computer vision tasks in the context of machine learning
vary in complexity from image detection and classification
of stills to higher-order inferences drawn from video com-
posed of multiple still images. Understanding visual scenes,
the context in which objects appear in images, is one of
the common overarching tasks in computer vision. Towards
that end, Microsoft COCO introduced the Common Objects
in Context (COCO) dataset to address three core research
problems to understand scenes: detecting non-iconic views
of objects, contextual reasoning between objects, and precise
2D localization of objects [16]. The COCO dataset contains
91 common object categories with 82 categories having more
than 5000 labeled instances, with the total dataset having
2.5 million labeled instances across 328000 images. This
is in contrast to the ImageNet dataset, which has more
hand labeled categories (over 20000) but fewer instances
per category. For our experiments, we restricted ourselves
to the the 2012 ILSVRC validation set consisting of 50000
validation images across 1000 categories.

With the overarching goal of building models that cap-
ture contextual clues to improve detection of in-context
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objects and identify inconsistent with the scene context, the
COCO OOC dataset was formed by placing out of context
COCO objects to other COCO images in order to detect and
identify images out-of-context (OOC) [57], [58]. The COCO
OOC dataset has the following eight broad out-of-context
image scenarios with over 150000 images:

• Animal-in-indoor
• Appliance-in-outdoor
• Electronic-in-outdoor
• Food-in-outdoor
• Indoor-Big
• Outdoor-Big
• Outdoor-object-indoor
• Vehicle-in-indoor

Finally, the ground truth labeling of the out-of-context
images was not included in the metadata for the COCO
OOC dataset, and establishing a dictionary between the
ImageNet categories, the COCO categories, and the COCO
OOC data set was beyond the scope of this project.

4.2 Deep Learning Model Architectures
4.2.1 NIDS Model Architectures
The NIDS model architectures used for our experiments
were developed in [66] and [61]. They consist of a fully
connected neural network architecture (FcNN) and a 1-
dimensional convolutional neural network (1dCNN) archi-
tecture implemented in both deterministic and stochastic
settings with two models each trained on the UNSW and
CICIDS data sets respectively (see Appendix for more de-
tails).

4.2.2 ResNet Model Architectures
Our Imagenet and COCO OOC Data experiments compared
the five pre-trained ResNet models that are included in the
torch.models repository, with a sampling of the final, dense
layer of each model using HMC implemented in hamiltorch
(see Figure 4 in Appendix).

This required turning each pre-trained model into Se-
quential model, and then partitioning this Sequential model
into a function to be applied in a custom built data loader
and a single layer neural network to be sampled by hamil-
torch. Our baseline performance was established on the Im-
ageNet dataset on which the ResNet models were trained,
and the out-of-distribution detection experimented was con-
ducted by sampling from the COCO OOC dataset.

4.3 Computational Experiments
When comparing our deterministic models against their cor-
responding Bayesian counterparts, we note that the weights
of the former are optimized using stochastic gradient de-
scent to determine a single model f(·;ω) with parameters ω,
such that on a given input x∗, the deterministic model out-
puts a prediction ŷ = f(x∗;ω). For our Bayesian neural net-
works, samples were generated from the posterior distribu-
tion resulting in a set of samples {ωs}s∈S ∼ p(ω|X,Y) such
that the predictive distribution can be approximated via
multiple networks draws for each test image ŷs = f(x∗;ω).

Our general aim was to establish the viability of our
certainty scoring regime and out-of-distribution detection

test in both deterministic and stochastic settings across
different tasks and modalities. Towards that end, and given
the limitations of each data modality, we devised different
experiments for each modality, aiming to capture what a
relevant form of OOD detection would look like.

Additionally, our experiments were set up to investigate
the viability of using HMC with hamiltorch in lieu of a
deterministic model to assess the performance trade offs
that enable OODD for individual datum. In particular, when
assessing the OODD detection abilities for our deterministic
model, we conceptualized the OODD test as applying to
data that was either held out of a data set as in the case of the
packet data, or otherwise, data that is deliberately designed
to be out-of-context, as in the image detection case.

4.3.1 Network Traffic Data
Our deterministic model architectures were implemented in
Tensorflow, and our stochastic models were implemented
in hamiltorch, with architectures specified using Pytorch.
We implemented HMC with No U-Turn sampling (NUTS)
in order to optimize our step-size parameters for each of
our stochastic model, and restricted our training samples to
approximately 8000 samples of the CICIDS and UNSW data
sets.

Our experiments sought to achieve the following goals:

1) Verify that empirical competence, either globally
or within labels indicated that TP certainty scores
stochastically dominated the FP certainty scores;

2) Verify that our out-of-distribution detection test
could identify that holdout data was out-of-
distribution relative to models trained on the re-
maining dataset whenever the corresponding model
was competent;

3) Verify that our out-of-distribution detection test
could identify that individual hold out samples
were out-of-distribution relative to the Bayesian
models trained on the remaining dataset whenever
the corresponding model was competent.

The first goal was reached by training and evaluating the
performance of our different models, specifically running
multiple forms of the Mann Whitney U test on the TP and
FP distributions, in addition to plotting the distributions of
certainty scores by their predictive status. The second goal
was reached by first running our out-of-distribution test on
the entire tranche of omitted data at the 0.05% and 0.001%
significance level for both our deterministic models, and the
ensemble model formed for our stochastic models. The final
goal was reached by running our out-of-distribution test on
the individual packet certainty distributions generated by
our stochastic models. Each goal was tested in two different
experimental contexts against the baseline model.

Our first experiment dropped any attack class from the
dataset that appeared in less than 1% of the data set, before
training the corresponding models. In the UNSW dataset,
we dropped the attack class: worms. For the CICIDS dataset,
we dropped the attack classes: Web Attack - Sql Injection,
Portscan, Bot, Web Attack - Brute Force, and Heartbleed.

Our second experiment omitted all Denial of Service
(DoS) labeled packets from the training samples. In the
UNSW dataset, we only dropped the attack class DoS.
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For the CICIDS data set, we dropped the following attack
classes: DoS Hulk, DDoS, DoS GoldenEye, DoS Slowloris,
and DoS Slowhttptest. The dropped attack classes account
for approximately 4.25% of the UNSW dataset and 58.23%
of the CICIDS data set.

4.3.2 ImageNet and COCO OOC Data
For our stochastic ResNet models, we transferred the pre-
trained weights of each ResNet model to its corresponding
stochastic model and sampled the weights from the final,
dense layer. Each stochastic model applied the convolu-
tional layers with corresponding pre-trained weights to each
normalized image before sampling the weights from the
final layer of the network. We trained our stochastic models
on the 2012 ImageNet validation dataset that consisted of
50000 images, with a train-test split of 75%-25%.

We compared the performance of five pre-trained
ResNet architectures in both a deterministic and stochastic
setting against COCO OOC images drawn from eight differ-
ent categories. Further, we gathered baseline performance of
each architecture and setting against the ImageNet 2013 val-
idation dataset to establish both accuracy and competence.

In the deterministic setting, we applied each of our
five pre-trained ResNet models to images with a shared
common object out of context. In total, there were 479
distinct common objects forming distinct tranches of images
of common objects out-of-context across the eight categories.
Each tranche has between 500 and 1200 unique images
wherein the object was out of context with respect to the
background for our deterministic models.

In the stochastic setting, we sampled from the final
fully connected layer of the deterministic model architecture
applied to the output of the penultimate layer of the deter-
ministic model applied to our preprocessed image data. We
trained the stochastic models using HMC implemented in
hamiltorch on 75% of the ImageNet 2013 validation dataset,
and tested each model against the remainder of the dataset
to gather the baseline statistics across 300 samples.

Finally, for the purposes of performing out of distribu-
tion detection on the COCO OOC images, we randomly
selected 64 baseline images across the eight categories, and
applied our stochastic model to the corresponding tranche.

4.4 Evaluation Metrics

The primary experimental task was to determine the efficacy
of our certainty framework to determine when inputs were
out-of-distribution with respect to a given model. We report
the empirical competence for both data modalities. When
evaluating the out-of-distribution detection capability of our
OODD test on both modalities, we used the strong form of
our OODD test, making sure to report both the global and
local proportions of the samples (tranches) which the OODD
test identified as OODD. However, we gathered different
scores for our two tasks given the size and scope differences
between our two tasks, the number of local labels in each
dataset, and the experimental design to generate out of
distribution examples.

Additionally, for the NIDS data, we also ran an ex-
periment to determine what proportion of tranche based
TPs and Bayesian TPs were labeled as out-of-distribution

by our test. This experiment compared the performance
of the OODD test at determining what proportion of TP
data relative to our model was incorrectly flagged as out-
of-distribution. This experiment was applied to both the
tranche data across both the deterministic and stochastic
models, as well as to the individual data for the stochastic
models.

When evaluating our NIDS models, in addition to empir-
ical competence scores and OODD test performance scores,
we gathered the following scores to compare models: multi-
class classification accuracy, binary classification accuracy,
false omission rate, misclassified positive rate, and F1 score.
The multi-class classification accuracy refers to a model’s
ability to correctly classify packet labels. Binary classifica-
tion accuracy refers to a model’s ability to correctly classify
packets as benign or malicious, and is computed as the
sum of True Positive malicious packets, and True Negative
benign packets, divided by the total number of packets.

In contrast with the scores gathered for our NIDS mod-
els, we focused on category accuracy and certainty scores
in order to directly compare pre-trained ResNet model
architectures with their corresponding stochastic variants
that sampled parameters for the final, fully connected layer.
This is in contrast with the common ILSVRC contest metric
of gathering whether the models in question were able to
accurately place the object identified in its top five pre-
dictions; because we are not proposing new architectures,
but only trying to establish the efficacy of certainty scoring
for OODD, placement in the top five is irrelevant to the
use of a certainty score. We also gathered the two primary
competence metrics, component and empirical competence
of our baseline models, in addition to the performance of
the strong form of our out-of-distribution detection test.

5 RESULTS AND DISCUSSION

Our overarching goals are to evaluate our certainty scoring
framework with respect to:

1) the quality of model performance;
2) the ability to perform out-of-distribution detection.

This necessitated the experiments described in Section 4
on our two different data modalities, each with different
experiments conducted. We found that proposed certainty
framework allows us to provide assurance about model
performance and to perform out of distribution detection.

The Pearson correlation coefficient between multi-class
accuracy and empirical competence was -0.034, suggesting
that competence and accuracy are independent. To ground
our intuitions, consider Table 1. The Deterministic 1d CNN
had low multi-class accuracy, but high empirical compe-
tence, indicating that whenever the model was wrong, it did
so with extremely low certainty, whereas when the model
was correct, it did so with high certainty. This suggests that
using certainty scores allows for inference about the quality
of model prediction.

Additionally, we found that the global distribution of TP
certainty scores were a reliable means of checking if a test
data set is in-distribution or out of distribution, using both
deterministic tests using Mann Whitney U scores, and our
novel ECDF test, across modalities and tasks. As presently
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implemented, the local stage of the test is inherently biased
towards rejecting inputs as out-of-distribution.

In the first NIDS experiment with tranche data, the worst
performing models was the deterministic FcNN, which only
globally rejected 93.9% of all tranches on the CICIDS data
at 0.1% significance, and the stochastic 1dCNN which only
globally rejected 99.4% of the sampled tranches at 0.1%
significance. In the second NIDS experiment, every DoS
tranche was globally rejected as out of distribution with
the exception of the Deterministic 1dCNN, which only
identified 92.3% of the DoS tranches as out-of-distribution
at the global stage with 0.1% significance.

In contrast, the ResNet experiment models performed
well, with the worst performance coming from the deter-
ministic ResNet50 and ResNet101 models, both of which
identified 99.6% of OOC data as out-of-distribution at 5%
significance. We discuss the respective experimental results
in greater detail in the following subsections.

5.1 Network Traffic Experiments

Our two NIDS experiments consisted of comparing baseline
model performance against models trained on datasets with
omitted data. To determine the baseline performance, we
first gathered scores on in-distribution data, which are dis-
played in Table 1. Model scores demonstrate high binary
accuracy for in-distribution data across all models, with
higher multi-classification accuracy for the fully connected
neural networks being demonstrated consistently across
both datasets.

The stochastic models had a greater misclassified posi-
tive rate, and the false omission rate increased for the UNSW
data but decreased for the CICIDS. Overall, the FcNNs
outperformed the 1dCNN in terms of accuracy across both
datasets and implementations (deterministic or stochastic),
and relatedly in terms of empirical competence.

UNSW D FcNN S FcNN D 1dCNN S 1dCNN
Multi-Class Accuracy .804 .700 .188 .636
Binary Accuracy .984 .941 .979 .902
Misclassified Positive Rate .258 .326 .260 .362
False Omission Rate .039 .158 .025 .256
F1 Score .999 .959 .986 .930
Empirical Competence .649 .503 .619 .269
CICIDS
Multi-Class Accuracy .776 .729 .174 .688
Binary Accuracy .920 .981 .920 .932
Misclassified Positive Rate .182 .339 .181 .463
False Omission Rate .446 .035 .441 .172
F1 Score .957 .987 .957 .954
Empirical Competence .577 .507 .580 .353

TABLE 1
Baseline Deep Learning Model Performance Scores. Top scores in

Bold

Furthermore, empirical competence for each model was
sufficiently high enough that we were able to attain empir-
ical validation for Theorem 1 of the competence hierarchy
for nontrivial α, confirming the stochastic dominance of TP
distributions of certainty scores by predictive status within
our framework by informedness and competence.

We observed that the TP and FP distributions were
sufficiently separated, because each model was deemed
sufficiently competent globally, and similarly, we observed
separations between the two distributions within categories

where models were sufficiently competent, as seen globally
in Figure 5 (see Appendix ), and locally in Tables 2 and 3.
The latter table is truncated only to show instances across
architectures where the p-value was at least .001, and left
blank when the model otherwise failed to predict both
True and False positives for the listed category. We also
observed that the CICIDS models were generally amateur
or incompetent at identifying the various non-DDoS DoS
labeled packets, as seen in Figure 6 (see Appendix).

We found that the stochastic models showed a greater
divergence between the certainty of true positives from
false positives. Given that the deterministic models showed
higher empirical competence, and since the deterministic
models had higher accuracy, we find that this indicated that
there was greater certainty when falsely classifying, even
though mistaken classification occurred less frequently. This
would suggest that more information can be gleaned about
the predictive status of a sample with a low certainty score
in a stochastic model than one from a deterministic model.

generic exploits normal analysis fuzzers shellcode dos recon backdoor worms
D FcNN 0 0 0 0 0 0 .200 .040
S FcNN 0 0 0 .374 0 0 .125
D 1dCNN 0 0 .926 0 0 0 0 1.0
S 1dCNN 0 0 0 0 .538 1.0 0

TABLE 2
Baseline UNSW Mann-Whitney p-values for TP vs. FP Certainty

Distributions. Cells left blank when models failed to have both TP and
FP distributions to compare. Higher p-values indicative of greater

tendencies towards incompetence within category by model.

In each of our baseline models we generally found
high competence at a global level, although each model
varied with respect to empirical competence in-label, per
Tables 2 and 3. Specifically, every UNSW model fared
poorly with respect to at least one attack category, with
analysis, dos, and backdoor being incompetently identified by
the Bayesian FcNN & Deterministic 1dCNN, the Bayesian
FcNN & Bayesian 1dCNN respectively, the Deterministic
FcNN and Deterministic 1dCNN respectively. The CICIDS
models all generally performed competently, excepting the
DoS categories, and the FcNN models on WA-XSS. In par-
ticular, the deterministic models were highly incompetent
with respect to the DoS Slowloris category while the Bayesian
models were incompetent with respect to the DoS GoldenEye
category, and the DoS Hulk category to a lesser degree.
In part, our experiment withholding the DoS data was
motivated by the widespread incompetence at identifying
these categories, as well as our interest in evaluating model
performance where DDoS was withheld.

DoS Slowloris WA-XSS DoS GoldenEye DoS Slowhttptest Heartbleed DoS Hulk
D FcNN 1 .521 0 .980 0
S FcNN 0 .051 .457 .022
D 1dCNN 1 .005 .021 .003 0
S 1dCNN .031 .760 .020 .292 .037

TABLE 3
Insignificant Baseline CICIDS Mann-Whitney p-values for TP vs. FP

Certainty Distributions. Cells left blank when models failed to have both
TP and FP distributions to compare. Higher p-values indicative of

greater tendencies towards incompetence within category by model.

In order to perform our out-of-distribution test experi-
ments, we needed to retrain each model on datasets omit-
ting the holdout data. We contrast the baseline model per-
formance in Table 1 with our experimental results in Tables
4 and 8.
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UNSW D FcNN S FcNN D 1dCNN S 1dCNN
Multiclass Accuracy .829 .706 .206 .698
Binary Accuracy .986 .943 .976 .967
Misclassified Positive Rate .269 .321 .268 .300
False Omission Rate .035 .160 .070 .094
F1 Score .990 .960 .983 .982
Empirical Competence .635 .509 .630 .233
CICIDS
Multiclass Accuracy .722 .726 .219 .674
Binary Accuracy .907 .983 .901 .972
Misclassified Positive Rate .210 .349 .229 .403
False Omission Rate .153 .038 .444 .053
F1 Score .950 .989 .946 .981
Empirical Competence .482 .455 .487 .397

TABLE 4
Experiment #1 Deep Learning Model Performance Scores

Notably in our first experiment, we found that scores
roughly remained the same, likely as the omitted samples
appeared infrequently enough when training as to not sig-
nificantly impact model weights, even on the final layers,
which were contingent on the number of output labels.

UNSW Tranche % OOD % Globally OOD % Locally OOD % Indeterminate
D FcNN 1 0 1 0 1
S FcNN 2 1 1 1 0
D 1dCNN 1 1 1 1 0
S 1dCNN 2 .5 1 .5 .5
CICIDS
D FcNN 1000 (2883) .572 .937 .575 .368
S FcNN 1000 (1030) 1 1 1 0
D 1dCNN 1000 (2883) .483 1 .483 .517
S 1dCNN 1000 (1030) .549 .997 .551 .450

TABLE 5
Experiment #1 Hold-out at 5% Significance. Parentheses represent

total possible tranches whenever sampling was capped at 1000.

In general, we found that these results still held, with
the worst performing models in both cases belonging to
the deterministic CICIDS models, as seen in Table 5 at 5%
significance and in Table 6 at 0.1% significance.

UNSW Tranches % OOD % Globally OOD % Locally OOD % Indeterminate
D FcNN 1 1 1 1 0
S FcNN 2 1 1 1 0
D 1dCNN 1 1 1 1 0
S 1dCNN 2 1 1 1 0
CICIDS
D FcNN 1000 (2883) .193 .212 .28 .106
S FcNN 1000 (1030) .99 .99 1 .01
D 1dCNN 1000 (2883) .364 .777 .487 .536
S 1dCNN 1000 (1030) .938 .993 .943 .06

TABLE 6
Experiment #1 Hold-out at 0.1% Significance. Parentheses represent

total possible tranches whenever sampling was capped at 1000.

In contrast, Table 7 shows the performance of the
Bayesian models on individual packets using two different
intervals: the default interval of (.25, .75) and an expanded
interval of (.05, 1), and assuming a Binomial distribution of
the number of Bayesian samples where the corresponding
ECDF evaluated at their certainty score would fall within
the target interval.

Immediately we see varying the target interval lead
to different outcomes depending on the dataset, and find
support that when further developing the ECDF test, we
ought to use the posterior distribution function in lieu of a
binomial distribution before determining the likelihood that
a test sample is not in-distribution.

As a result of dropping a significant portion of each data
set, the second experiment saw more noticeable changes in
model performance, as seen in Table 8.

UNSW & target interval Samples % OOD %Globally OOD %Locally OOD % Indeterminate
S FcNN (.25,.75) 92 .696 .696 1 .304
S FcNN (.05,1) 92 .283 .283 1 .717
S 1dCNN (.25,.75) 92 .696 .696 1 .304
S 1dCNN (.05,1) 92 .283 .283 1 .717
CICIDS& target interval
S FcNN (.25,.75) 3000(31960) 1 1 1 0
S FcNN (.05,1) 3000(31960) 1 1 1 0
S 1dCNN (.25,.75) 3000(31960) .724 .724 1 .276
S 1dCNN (.05,1) 3000(31960) 1 1 1 0

TABLE 7
Experiment #1 Out-of-distribution detection at individual-packet level by

Bayesian model, using ECDF test with β adjusted according to
α = .05, γ1 = .25, δ1 = .75 (and alternatively γ2 = .05 and

δ2 = 1),and sample size; each FcNN has 360 Bayesian samples per
sample, and each 1dCNN has 260 Bayesian samples per sample.

UNSW D FcNN S FcNN D 1dCNN S 1dCNN
Multi-Class Accuracy .805 .698 .213 .698
Binary Accuracy .986 .967 .973 .967
Misclassified Positive Rate .260 .212 .264 .299
False Omission Rate .010 .041 .075 .094
F1 Score .990 .984 .982 .982
Empirical Competence .685 .550 .680 .197
CICIDS
Multi-Class Accuracy .996 .966 .437 .945
Binary Accuracy .907 .979 .901 .980
Misclassified Positive Rate .210 .032 .229 .092
False Omission Rate .153 .015 .444 .014
F1 Score .950 .978 .976 .975
Empirical Competence .981 .899 .987 .743

TABLE 8
Experiment #2 Deep Learning Model Performance Scores

The UNSW models performed similarly to their baseline
counterparts other than small decreases in false omission
rate for the stochastic models. However, the CICIDS models
each had a significant increase in multi-class accuracy scores
and decreases in misclassified positive and false omission
rates. We attribute the significant increase in performance of
the CICIDS models over the UNSW models to the significant
portion of the dataset being omitted by dropping the five
DoS-labeled classes in the CICIDS dataset. Other than DDoS
attack class, the baseline models generally struggled to
correctly classify DoS attacks with high competence.

UNSW Tranches % OOD Globally Locally % Indeterminate
D FcNN 36 .722 1 .722 .278
S FcNN 109 .817 1 .817 .184
D 1dCNN 36 .639 1 .639 .361
S 1dCNN 109 .624 1 .624 .376
CICIDS
D FcNN 1000 (8741) .124 1 .124 .876
S FcNN 95 .674 1 .674 .326
D 1dCNN 1000 (8741) .081 1 .081 .919
S 1dCNN 190 .463 1 .463 .537

TABLE 9
Experiment #2 Hold-out at 5% Significance. Parentheses represent

total possible tranches whenever sampling was capped at 1000.

For both experiments, we found the test certainties were
distributed differently from TP and FP in all models with
the exception of the Stochastic FcNN, which had a p-value
of .128 between the test certainty distribution, TP and FP
certainty distributions. This generally held within label as-
signments, as we failed to reject the null hypothesis that the
test and FP data were drawn from the same distribution for
only one label per model in the second experiment.

We examine the performance of the Bayesian models on
individual packets in Table 11. Here, we found that altering
the size of the target interval improved out-of-distribution
detection for the UNSW data, but otherwise did not impact
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UNSW Tranches Tranche % Identified OOD Globally Locally % Identified Indeterminate
D FcNN 36 1 1 1 0
S FcNN 109 1 1 1 0
D 1dCNN 36 1 1 1 0
S 1dCNN 109 .890 .945 .945 .11
CICIDS
D FcNN 1000 (8741) .126 1 .126 .874
S FcNN 95 .421 1 .421 .579
D 1dCNN 1000 (8741) 1 1 .126 .874
S 1dCNN 190 .258 .742 .258 .741

TABLE 10
Experiment #2 Hold-out at 0.1% Significance. Parentheses represent

total possible tranches whenever sampling was capped at 1000.

the performance of the CICIDS models.

UNSW& target intervals Samples % ID’d OOD Globally Locally % ID’d Indeterminate
FcNN (.25,.75) 3000( 3396) .898 .898 1 .102
FcNN (.05,1) 3000( 3396) 1 1 1 0
1dCNN (.25,.75) 3000( 3396) .724 .724 1 .276
1dCNN (.05,1) 3000( 3396) 1 1 1 0
CICIDS& target intervals
FcNN (.25,.75) 2946 1 1 1 0
FcNN (.05,1) 2946 1 1 1 0
1dCNN (.25,.75) 3000 (5891) 1 1 1 0
1dCNN (.05,1) 3000 (5891) 1 1 1 0

TABLE 11
Experiment #2 Out-of-distribution detection at individual-packet level by

Bayesian model, using ECDF test with β adjusted according to
α = .05, γ1 = .25, δ1 = .75 (and alternatively γ2 = .05 and

δ2 = 1),and sample size; each FcNN has 360 Bayesian samples per
sample, and each 1dCNN has 260 Bayesian samples per sample.

In order to justify using our OODD test, we also sought
guarantees that the test would be capable of distinguishing
TP from FPs, while also ensuring that random samples of
the TP distribution would be recognized as belonging to
the TP distribution. Towards that end, we gathered the
performance of our models across the experiments at OODD
on the TP data at 0.1% significance in Table 12 and Table 13,
for tranches of 33 samples per tranche and Bayesian samples
for individual packets respectively.

UNSW Tranches % ID’d OOD Globally Locally % ID’d Indeterminate
Baseline DFcNN 640 0 0 1 1
Baseline SFcNN 181 0 0 1 1
Baseline D1dCNN 632 .002 .002 1 .998
Baseline S1dCNN 161 0 0 1 1
Ex1 DFcNN 638 0 0 1 1
Ex1 SFcNN 181 0 0 1 1
Ex1 D1dCNN 630 .003 .003 1 .997
Ex1 S1dCNN 169 0 0 1 1
Ex2 DFcNN 635 0 0 1 1
Ex2 SFcNN 180 0 0 1 1
Ex2 D1dCNN 631 0 0 1 1
Ex2 S1dCNN 180 .006 .006 1 .994
CICIDS
Baseline DFcNN 109 0 0 1 1
Baseline SFcNN 16 0 0 1 1
Baseline D1dCNN 109 0 0 1 1
Baseline S1dCNN 2 0 0 1 1
Ex1 DFcNN 82 0 0 1 1
Ex1 SFcNN 2 0 0 1 1
Ex1 D1dCNN 82 0 0 1 1
Ex1 S1dCNN 2 0 0 1 1
Ex2 DFcNN 293 0 0 1 1
Ex2 SFcNN 4 0 0 1 1
Ex2 D1dCNN 293 .007 .007 1 .993
Ex2 S1dCNN 4 0 0 1 1

TABLE 12
Proportion of tranche data of TP (in-distribution) data by Dataset and
Experimental Model that was determined as OOD by OODD test at

0.1% significance cutoff, with 33 samples per tranche.

With respect to the deterministic results, we found
that the tranches of in-distribution data were near uni-
formly indeterminate with respect to status. Nonetheless,
the global form of the test reliably characterized tranches of
in-distribution data as being in-distribution across datasets
and architectures.

Tables 13 and 14 displays the power of our OODD test
with target intervals (.25,.75) and (.05,1) respectively using

UNSW Samples % ID’d OOD Globally OOD Locally OOD % ID’d Indeterminate
Baseline SFcNN 3000(7989) .576 .576 1 .424
Baseline S1dCNN 3000(7989) .552 .552 1 .448
Ex1 SFcNN 3000(7979) .592 .592 1 .408
Ex1 S1dCNN 3000(7979) .638 .638 1 .362
Ex2 SFcNN 3000(7649) .838 .838 1 .162
Ex2 S1dCNN 3000(3396) .999 .999 1 .001
CICIDS
Baseline SFcNN 3000(70513) .594 .594 1 .406
Baseline S1dCNN 3000(14103) .600 .600 1 .400
Ex1 SFcNN 3000(31960) 1 1 1 0
Ex1 S1dCNN 3000(31960) 1 1 1 0
Ex2 SFcNN 3000(2946) 1 1 1 0
Ex2 S1dCNN 3000(5891) 1 1 1 0

TABLE 13
Proportion of individual data (up to 3000 samples) of in-distribution data
by Dataset and Experimental Bayesian Model that was determined as
OOD using ECDF test with β adjusted according to α = .05, γ = .25,
δ = .75, and sample size; each FcNN has 360 Bayesian samples per

sample, and each 1dCNN has 260 Bayesian samples per sample.

the ECDF tests and a β cut-off determined by a target sig-
nificance of 0.05. In contrast with the tranche based models,
the individual Bayesian samples were found to be dispersed
across the three possible categories of In-Distribution,Out-of-
Distribution, and Indeterminate. The ability of the ECDF test
to reliably characterize in-distribution data varied wildly
between datasets, and architectures, and target intervals.

Presently, when comparing with the performance of the
Bayesian samples in Tables 7 and 11, we see that there
is a complete collapse of the ability to discern individual
packets as in-distribution and out-of-distribution for the ex-
perimental CICIDS models, and for the second experiment
UNSW models. The baseline CICIDS models performed
comparably to the UNSW Baseline and first experiment.
Additionally, expanding the interval improves the ECDF
test performance at recognizing in-distribution data from
out-of-distribution data, although it did not improve the
performance for the CICIDS experimental models.

UNSW Samples % ID’d OOD Globally OOD Locally OOD % ID’d Indeterminate
Baseline SFcNN 3000(7989) .256 .256 .910 .644
Baseline S1dCNN 3000(7989) .452 .452 1 .548
Ex1 SFcNN 3000(7979) .364 .364 1 .636
Ex1 S1dCNN 3000(7979) .675 .675 1 .325
Ex2 SFcNN 3000(7649) 1 1 1 0
Ex2 S1dCNN 3000(3396) 1 1 1 0
CICIDS
Baseline SFcNN 3000(70513) .481 481 1 .519
Baseline S1dCNN 3000(14103) .114 .114 1 .886
Ex1 SFcNN 3000(31960) 1 1 1 0
Ex1 S1dCNN 3000(31960) 1 1 1 0
Ex2 SFcNN 2946 1 1 1 0
Ex2 S1dCNN 2946 1 1 1 0

TABLE 14
Proportion of individual data in-distribution data by Dataset and

Experimental Bayesian Model that was determined as OOD using
ECDF test with β adjusted according to α = .05, γ = .05, δ = 1, and
sample size; each FcNN has 360 Bayesian samples per sample, and

each 1dCNN has 260 Bayesian samples per sample.

Overall, we found that the MWU test performed better
on the UNSW data than it did on the CICIDS data, whereas
the ECDF test on the individual packets was more reliable
on the CICIDS data than the UNSW data. However, this
is most likely due to the use of the Binomial prior, which
biased the ECDF test towards rejecting input data as out-of-
distribution, as seen in Tables 13 and 14.

Across all experiments, we found that using the global
stage of the OODD test was sufficient for determining
if a tranche or Bayesian samples were out-of-distribution.
Finally, in all cases, the local stage was incapable of correctly
identifying in-distribution data as in-distribution in both
statistical frameworks.
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5.2 ImageNet and COCO OOC Experiments

Tables 15 and 16 describe the performance of our ResNet
models. While we intended the stochastic ResNet model
as a proof of concept for our out-of-distribution tests, they
can be developed for production once provided with an
appropriate weighted function that will yield a model with
better performance than the pre-trained counterpart, see
Figure 7 (see Appendix). We observe that there were
tradeoffs made between accuracy and competence for our
ensemble model, as each ensemble models at one point
attained greater accuracy than its deterministic counterpart,
before declining.

Deterministic Model ResNet18 ResNet34 ResNet50 ResNet101 ResNet152
Accuracy .648 .697 .796 .802 .810

Component Competence .674 .733 .374 .700 .682
Empirical Competence .368 .435 .276 .488 .499

TABLE 15
Performance Scores for Pre-trained ResNet models

Further, the inversion of the negative log-likelihood
curve suggests that the hyperparameters should be vastly
different for each of these models. While we attempted
to account for this running these models with No U-turn
Sampling to improve step-size performance, the inversion
of the NLL curve still appeared, which suggests that we
should optimize with respect to step-length.

Ensemble Stochastic Model ResNet18 ResNet34 ResNet50 ResNet101 ResNet152
Accuracy .570 .622 .781 .798 .801

Component Competence .526 .579 .627 .703 .711
Empirical Competence .267 .335 .498 .567 .577

TABLE 16
Performance Scores for Bayesian ResNet models

Within our eight categories and across all five baseline
architectures, using our OODD test, we globally reject with
p-values below 1e-50, and locally reject in every case with
significance at 0.05. Further, per Tables 5.2 and 5.2, we found
that while in the deterministic case that adding additional
layers led to marginal decrease in the ability to detect that
tranches were globally out-of-distribution.

Rather than directly contrast the deterministic and
stochastic ResNet models, our tests for the stochastic case
were able to be run on individual images as opposed to
tranches of the same image and background subject to
2-dimensional transformations to change the context. A
practical accounting of the deterministic OODD test is to
consider its application to detecting an out-of-context object
being captured by multiple simultaneous sensors, while
the stochastic OODD test is drawn against the Bayesian
samples for a single source image from a single sensor.
Computational considerations and a preference to explore

Deterministic Model (N=475) ResNet18 ResNet34 ResNet50 ResNet101 ResNet152
Estimated Out-of-Distribution 1 1 .996 .996 .998

Estimated Global Out-of-Distribution 1 1 .996 .996 .998
Estimated Local Out-of-Distribution 1 1 1 1 1

Estimated Indeterminate 0 0 .004 .004 .002

TABLE 17
Out-of-distribution Detection Performance For Pre-trained ResNet
models with sampled tranches selected by common out-of-context

image at 5% significance.

the OODD powers of the Bayesian approach led us to

conduct the experiment by randomly selecting images from
across the eight categories and then looking at the certainty
score distributions drawn from the sample distributions
we gathered from running hamiltorch. In contrast with
the deterministic case, according to our OODD test, each
stochastic model estimated less than 100% of the sampled
images to be out-of-distributionBoth tranche sampling by
common out-of-context image and the Bayesian sampling
for individual inputs were determined to be locally out-of-
distribution at least 99.6% of the time.

Ensemble Stochastic Model (N=640) ResNet18 ResNet34 ResNet50 ResNet101 ResNet152
Estimated Out-of-Distribution 1 1 1 1 1

Estimated Global Out-of-Distribution 1 1 1 1 1
Estimated Local Out-of-Distribution 1 1 1 1 1

Estimated Indeterminate 0 0 0 0 0

TABLE 18
Out-of-distribution Detection Performance For Bayesian ResNet
models on individual out-of-context images with ECDF test and

adjusted β = 0.927 using significance .05, γ = 0.025, δ = .975, and
267 Bayesian samples per Sample

6 CONCLUSION

Reiterating our overarching motivation, we wished to find
if our certainty framework could be used: i) to evaluate
the quality of model predictions; ii) for out-of-distribution
detection across multiple modalities and architectures.

For the first goal, we found empirical support across all
modalities, datasets, architectures, and tasks that we could
reliably use our certainty and competence framework to
distinguish TP from FPs within distributions, enabling us
to conclude that outputs with low certainty were much
more likely to be false positives than they were likely
to be true positives, and similarly that predictions with
high certainty scores were more likely to be True posi-
tives. Further, models with greater empirical competence
demonstrated a wider spread between the medians of the
certainty distributions for their global TPs and FPs. For the
second goal, we found empirical support that the global
TP distribution can be used to distinguish in-distribution
and out-of-distribution data reliably across modalities, task,
and statistical paradigms.However, we found that the ECDF
test without updating the binomial prior had substantially
worse performance than the tranche based sample method.
Finally, we observed consistent failure of the local stage of
our OODD test as presently constructed.

One point of failure for the local stage is that relying
on uniform significance values for all labels will bias the
local stage of the test towards determining that the test
distributions are out-of-distribution. This underscores the
need for using optimized parameters level per category,
especially as whenever β > 1

2 , the local stage of the test will
be biased towards determining any distribution is locally
out-of-distribution whenever the corresponding partition of
a datum’s distribution by predicted label occurs less than β
many times.

That our findings held independent of architecture, data
set, task, and modality suggests that in addition to the
theoretical nature of certainty as an intrinsic feature of
probability manifolds, our certainty framework and use
of certainty scoring distributions provides a robust means
of uncertainty quantification for assurance and evaluation
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of model quality, along with statistical inference. Since
the certainty framework captures an intrinsic feature of a
probability model, we can apply it to models presently in
production, including those in safety-critical settings. This
allows for guidance about model resilience at present, in
addition to help guide further model development. There
is the further implication that use of our certainty scoring
framework can supplement training to enhance robustness
by pulling out poor training examples, as well as help with
data exploration by helping to identify mislabeled examples
under certain theoretical conditions.

We also found evidence suggesting our certainty frame-
work can supplement training in order to enhance robust-
ness by helping to identify and pull out poor training
examples or mislabeled examples. Specifically, when work-
ing with CICIDS data, model performance and competence
can generally be improved by pooling the various DoS
categories into a single category.

One goal for future research is to refine the test to ensure
that in-distribution data does not become classified as out-
of-distribution within tolerable bounds that depend on the
informedness parameter α and a model’s related placement
in the competence hierarchy. Future work developing the
OODD and ECDF test on Bayesian samples should first
focus on improving performance on in-distribution data.
We propose this should be done by compute the marginal
likelihood, and then deriving the posterior distribution,
which we then should apply to test data.

One final additional goal for future research with the
COCO OOC datasets will be to develop better preprocessing
of the COCO OOC datasets to extract and establish ground
truth of the out-of-context objects in point of compari-
son with the ImageNet classification when working with
the pre-trained ResNet models. Additionally, it would be
worthwhile to train ResNet models on the COCO data and
classification system and contrast the performance of these
models on the COCO OOC data. Such future research aligns
with the goal of developing models that can both:

• correctly identify an out-of-context object within
bounding boxes,

• correctly classify the out-of-context image within the
bounding box,

• produce a score indicating the confidence of these
assessments to aid human agents making decisions.

Finally, a promising future direction of research is to de-
termine the degree to which of the proposed cost functions
in Section 3 can improve model competence and lead to
better inferential properties, particularly for models to be
deployed in an open-world environment.
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APPENDIX

Proofs

Proof. (of Proposition 1)

1) Immediate.
2) A proof by induction starting with d = 2 can be

used to establish that det(C(x)) = 1+(d−1)∥x∥2−
2
∑

i<j xixj = 1 +
∑

i<j(xi − xj)
2. For all real

values, it is clear that this will always be non-zero,
whence C(p) will always be invertible.

3) Expanding C(y), we have

⟨x,C(y)x⟩ = ⟨x,x⟩+ ⟨y,x⟩⟨x,1⟩ − ⟨x,y⟩⟨1,x⟩

which reduces to ⟨x,x⟩ as desired.

Proof. (of Theorem 1)

1) K ≥ α by the hypothesis that p is relatively α-
competent. Whenever K < µ̄ρ − µ̄ν , it immedi-
ately follows that µ̄ρ > α + µ̄ν , so suppose that
K ≥ µ̄ρ − µ̄ν .
Let ST and SF denote the sum of certainty scores
for the true and false positives respectively from
p on sample DN . Whenever p is α-competent and
K ≥ µ̄ρ − µ̄ν , we seek to prove the claim that SF ∈[(

NF

NT

)2
ST , (N −NT )

]
. That SF ≤ (N − NT ) is

immediate since the sum of certainty scores for false
positives is at most the number of false positives.
To prove the claim regarding the lower bound, we
rearrange

K =
1

N
(ST − SF ) ≥ µ̄ρ − µ̄ν =

1

NT
ST +

1

NF
SF .

After algebraic manipulation, we have SF ≥(
NF

NT

)2
ST .

From our bounds on SF , we have

1

N
ST − 1

N

(
NF

NT

)2

ST ≥ K ≥ 1

N
ST − NF

N
.

By algebraic manipulation,

NF

N
≥
(
(NF )2

NT

)
µ̄ρ.

Since µ̄ρ ≤ 1, this simplifies to

µ̄ρ ≤ min{1, N
T

N

(
1

NF

)
}.

The lower-bound for µ̄ρ follows straightforwardly
from NT

N µ̄ρ ≥ K ≥ α.
To find the bounds for µ̄ν , immediately from our
analysis above, µ̄ν ∈ [N−NT

NT µ̄ρ, 1]. We sharpen this
upper bound via algebraic manipulation of 1

N (ST −
SF ) = K ≥ α, isolating SF on the right-hand side
of the inequality, and appropriate scaling.

2) Supposing that p is α-expert, then K ≥ CC > α, and
so the results above apply.

Expanding the definition of α-expert, we have

K =
1

N
[ST − SF ]

≥ CC

=
1

N

∑
i∈[N ]

(⟨pi,qi⟩ − 1

d
)

> α ≥ 0

which we scale by N , deriving

ST ≥ ST − SF ≥
∑
i∈[N ]

(⟨pi,qi⟩ − 1

dN
) > 0.

Now, let ϑd be given by p 7→ maxi πi(p)− 1
d . Clearly

ϑd ≥ 0, as the maximum probability with respect to
d distinct labels will always be ≥ 1

d .
Next, partition [N ] = T

⋃
F into indices with true

positive predictions and false positive predictions.
With pi

ĵ
denoting the probability of the predicted in-

dex and pi
ǰ

the next-highest probability value in pi,
when p̂i = q̂i, we find that ⟨pi,qi⟩− 1

d = ϑd(p) ≥ 0.
Split the sum over N into sums over subsets T and
F, respectively and then substitute in ϑd for the T
sum:

ST ≥
∑
i∈T

ϑd(p
i) +

∑
i∈F

(⟨pi,qi⟩ − 1

d
) > 0

Since ϑd(p
i) ≥ 0 for all i ∈ T , we consider

two cases with respect to the F sum. In the case
where

∑
i∈F ⟨pi,qi⟩ − 1

d ≥ 0, we may drop the F
sum immediately without loss of generality since∑

i∈N ⟨pi,qi⟩ − 1
d ≥

∑
i∈T

ϑd(p
i) ≥ 0.

We then rearrange and simplify to find

ST −
∑
i∈T

ϑd(p
i) =

∑
i∈T

1

d
− pi

ǰ

> 0.

We then normalize using 1
NT to find

1

d
>

1

NT

∑
i∈T

pi
ǰ ,

as desired.
Continuing to finish the proof with respect to the
first case, we establish the probability bound as
follows:
Since X̌ ∈ [0, 1

2 ], we apply Popoviciu’s inequality
to find that at most σX̌ ≤ 1

4 . Independent of the
assumption that the sample average of alternatives
and the mean of alternatives agree when defined
with respect to sample DN , by the one-sided Cheby-
shev inequality derived from Cantelli’s inequality,

P{X̌ ≥ 1

d
+

a

4
} ≤P{X̌ − µϖ ≥ a

4
}

≤P{X̌ − µϖ ≥ aσX̌}

≤ 1

1 + a2
.

As a technical aside, if we treat the true distribution
as separate from the sampled distribution, then
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the one-sided Chebyshev inequality with respect to
the sampled average can be made slightly tighter
inequality using the bias correction term N

N−1 , e.g.

P{X̌ ≥ 1

d
+

a

4
} ≤ 1

1 + N
N−1a

2

since this inequality is made with respect to the
worst-case (sample) variance.
In the second case, we have

∑
i∈F ⟨pi,qi⟩− 1

d < 0. In
this sense, we will have an α-expert, α-informed p
that in the average case where it makes a mistake
assigns a probability for the correct label below
worse that of a uniform guess. In the worst-case
scenario, the assigned probability is effectively zero.
With this in mind, we rearrange the inequality first
to read:

ST −
∑
T

ϑd(p
i) ≥ SF +

∑
F

(⟨pi,qi⟩ − 1

d
)

≥ −NF

d

This simplifies to

NF

d
+

NT

d
=

N

d
≥
∑
i∈T

pi
ǰ ,

which we normalize to read:

N

dNT
≥ ¯̌X.

From here, we use the same analysis as above to
derive the variation of the one-tailed Chebyshev
inequality with respect to our new bound on ¯̌X .

3) If p is prescient, then∑
i∈[N ]

ς(pi)[1{j : yj = p̂j} − 1{j : yj ̸= p̂j}]

≥
∑
i∈[N ]

⟨pi,qi⟩.

We can write this to read:∑
i∈[N ]:yi=p̂i

ς(pi) ≥
∑
i∈[N ]

pi
ĵ
+

∑
i∈[N ]:yi ̸=p̂i

ς(pi)

and since ς(pi) = mink{|piδj,k−ĵ
− pik|} ≤ pi

ĵ
, it

follows that the∑
i∈[N ]

ς(pi) ≤
∑
i∈[N ]

pi
ĵ
,

requiring that p̂i = yi for all i ∈ [N ] and further, for
equality to obtain, we need pi = qi for all i. That is,
p needs to both correctly identify the label for every
label, but do so with total certainty on all samples.
It follows that CCC = 1, and thus CCC > α for all
α ∈ [0, 1).

Full Out-of-Distribution Detection Test

The first stage compares the distributions at a global level,
comparing the input distribution against the True Positive
(TP) distributions and False Positive (FP) distributions. If
the Mann-Whitney U test statistic has a p-value below our
significance threshold, then we reject the null hypothesis
that the global TP distribution and the test distribution are
the same. Similarly for the FP distribution. For the ECDF
test, we accept if we are above the β threshold.

In the global form of the test, we either conclude that a
test distribution belongs or does not belong to the TP and FP
distributions respectively. When we conclude that the test
distribution globally belongs, we globally accept, otherwise
we globally reject.

The second stage compares the distributions at local
levels, i.e within the label categories that are predicted
by the test distribution. We gather the Mann Whitney U
test statistics or ECDF test results in for both TP and FP
cases as before. In the second stage, whenever we fail
to reject the null hypothesis, we consider the projection
of the test distribution into that label to be within the
respective distribution. There are five possible local clas-
sifications: In-Distribution, Mixed - TP, Mixed, In FP, and
Out-of-Distribution. If a test distribution has one label’s
TP distribution that it is said to belong to, then it is In-
distribution. Otherwise, we consider the following subcases
local labels:

• If there are more than one local projections of the test
distribution that can be identified with the respective
reference distributions local label’s TP distribution,
then we consider this distribution to be Mixed. If we
only identify with local TP distributions, we say it
is Mixed - TP, to indicate that the test distribution
can be partitioned into multiple subsamples which
would look identical to the TPs of the reference
distribution. Otherwise, we classify the test distribu-
tion as Mixed to indicate that it resembles data on
which the reference distribution classifies correctly
and incorrectly by category.

• If there are no local projections of test distribution
that are identified with the local projections of the
reference distribution’s TP distributions, but it is
identified with FPs, then we say it is In FP, to indicate
that the test distribution at best resembles data that
the reference distribution falsely classifies.

• If there are no local projections of the test distri-
bution that can be identified with local projections
of the reference distribution to either TP or FP, we
determine that the test distribution is Locally Out-of-
Distribution.

Our two-stage evaluation counts accept/reject, global
accept/reject, and local decision as follows:

• We always accept as in-distribution the test distribu-
tions whose global TP distribution is identified as In-
Distribution with the reference global TP distribution
and that are locally determined to be In-Distribution.

• We always reject as out-of-distribution the test dis-
tributions identified as Out-of-Distribution with re-
spect to both global TP and FP distributions, and that
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are locally determined to be Out-of-Distribution in
the strong sense..

• If we use the weak-form of our test, anything
not always identified as in-distribution or out-of-
distribution, is labeled as Indeterminate. We also
gather the respective intermediate local stage evalu-
ation in order to provide a greater description to the
proportion of the Indeterminate data to aid human
decision making.

• If we use the strong-form of our test, we say any-
thing that is not globally identified with the ref-
erence global TP distribution is globally Out-of-
Distribution, and is globally rejected, including test
distributions that are identified as In-Distribution
with respect to global FPs. Further, any local status
which is not identified as locally In-Distribution is
counted as a local reject. If we reject both globally and
locally, then we reject the test distribution as out-of-
distribution. Otherwise, the test distribution status is
Indeterminate.

Network Architectures

Our FcNN consisted of four dense layers, pictured in Figure
1. The first and third layers used a ReLU activation function,
while the second layer used a LeakyReLU activation func-
tion. The final layer applied a SoftMax activation function
for the output. Further, the final two layers’ sizes depended
on the number of classes in the data set. We set the output
in each model’s penultimate layer by dividing the output
dimension of the first layer by the number of classes in
the data set. The final output layer of each model was
sized depending on the number of classes in each data
set. All the layers used random normal distribution for the
kernel initializer. We compiled the deterministic FcNN using
sparse categorical cross-entropy and an Adam optimizer.

Fig. 1. FcNN Model Architecture

Our 1dCNN architecture, pictured in Figure 2, contained
three 1D convolutional layers and three max pooling layers.
All convolutional and max pooling layers utilized the same
padding and a stride size of one. After flattening the data,
the model used two dense layers whose size depended on
the number of classes in the data set. We determined the
number of units in the first dense layer by multiplying the

number of classes in the models’ respective data sets by five,
and we implemented a ReLU activation function for the first
dense layer. The size of the final output layer was equal to
the number of classes in the data set and used a SoftMax
activation function. The deterministic 1dCNN models were
compiled using sparse categorical cross-entropy and an
Adam optimizer.

Fig. 2. 1dCNN Model Architecture
The 1D convolutional layers used a ReLU activation function. The filter
size started at 32 for the first layer and was doubled for each subsequent
layer. The pool size for the max pooling layer doubled with each subse-
quent layer, beginning at four.

For our COCO and COCO OOC experiments, we used
the five pre-trained ResNet models available in the Py-
torch library. Residual learning works by reparametrizing
a subnetwork of stacked layers and lets the parameter
layers represent a residual function. Letting H(x) denote
the function performed by the subnetwork with input x,
and the parameter layer representing a residual function
F (x) = H(x) − x. The subnetwork output is referred to as
a residual block, and ResNet models are formed by stacking
residual blocks (see Figure 3).

Fig. 3. Example Residual Block and Residual Connection Diagram

The primary advantage of introducing the identity map-
pings is that they facilitate signal propagation in both
forward and backward paths, with backward propagation
addressing the vanishing gradient problem[15].

Experimental Figures
Figure 5 displays the box-plot distributions of TP and FP
certainty scores for the 8 baseline NIDS models we con-
sidered, in every case demonstrating the separation of the
distributions that we expected given the competence of each
model. In contrast, Figure 6 shows the local (in)competence
of the baseline CICIDS models with respect to the DoS data.
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Fig. 4. ResNet Block Structure

Fig. 5. Certainty Distributions for Baseline Models.

Fig. 6. Certainty Distributions on CICIDS Benign and DoS Data. Every
Baseline CICIDS model demonstrated low certainty scores on DoS data,
and inconsistent competence on DDoS data, consistent with findings
that each CICIDS trained model was generally incompetent with respect
to DoS data.

The relative incompetence here motivated our decision to
drop DoS data as part of our second NIDS experiment.

Fig. 7. Accuracy, Empirical Competence, and Negative Log-likelihood of
Bayesian ResNets
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